THEORY OF PARTITION CHROMATOGRAPHY. III.

HANS VINK

Institute of Physical Chemistry, University of Uppsala (Sweden)
(Received April I6th, 1965)

As a supplement to earlier work on the theory of partition chromatography ${ }^{1,2}$ the direct solution of the differential equations for steady state conditions is considered. Use is made of the method of moments, which has proved to be a powerful tool in the study of transport processes ${ }^{3-6}$.

Using the model in refs. 1,2 for the chromatographic column and making minor changes in the notations, the differential equations for column operation are written in the form:

$$
\begin{align*}
& \frac{\partial f}{\partial t}=D_{1} \frac{\partial^{2} f}{\partial x^{2}}-v \frac{\partial f}{\partial x}+\frac{2 D_{2}}{V_{1} V_{2}}(g-\gamma f) \tag{I}\\
& \frac{\partial g}{\partial t}=D_{2} \frac{\partial^{2} g}{\partial x^{2}}-\frac{2 D_{2}}{V_{2}^{2}}(g-\gamma f) \tag{2}
\end{align*}
$$

In this model the partition process is represented by the formula:

$$
\begin{equation*}
g-\gamma f=\left(g_{0}-\gamma f_{0}\right) \mathrm{e}^{-m t} \tag{3}
\end{equation*}
$$

where:

$$
\begin{equation*}
m=\frac{2 D_{2}}{V_{2}}\left(\frac{\gamma}{V_{1}}+\frac{I}{V_{2}}\right) \tag{4}
\end{equation*}
$$

The symbols have the following meaning:
$f \quad=$ concentration of solute in the mobile phase;
$g \quad=$ concentration of solute in the stationary phase;
$v \quad=$ translational velocity of the mobile phase;
$V_{1}, V_{2}=$ volumes per interphase area of mobile and stationary phase, respectively;
$D_{1}, D_{2}=$ diffusion coefficients in mobile and stationary phase, respectively;
$\gamma \quad=$ partition coefficient.

DEFINITION OF MOMENTS

The problem is specified by considering a column of indefinite length containing a concentration peak of arbitrary form. The peak is localized in the sense that there are regions in the column on both sides of the peak where the concentration is zero. Taking two points a and b in these regions, on either side of the peak, the moments of the concentration distribution are defined as follows:
$F_{i}=\int_{a}^{b} x^{i} f \mathrm{~d} x ; \quad G_{i}=\int_{a}^{b} x^{i} g \mathrm{~d} x$
The time derivatives of the moments take the form :
$\dot{F}_{i}=\int_{a}^{b} x^{t} \frac{\partial f}{\partial t} \mathrm{~d} x, \quad \dot{G}_{i}=\int_{a}^{b} x^{i} \frac{\partial g}{\partial t} \mathrm{~d} x$
To evaluate these derivatives eqns. (1) and (2) are substituted into (6). Restricting the treatment to the first three moments, we have to consider integrals of the following type:

$$
\begin{align*}
& \int_{a}^{b} x^{i} \frac{\partial f}{\partial x} \mathrm{~d} x=\mathbf{I}_{a}^{b} x^{\prime} f-i \int_{a}^{b} x^{i-1} f \mathrm{~d} x=\left\{\begin{array}{l}
\mathrm{for} i=0 \\
-i F_{i-1} \text { for } i=1,2
\end{array}\right. \tag{7}\\
& \int_{a}^{b} x^{\prime} \frac{\partial^{2} f}{\partial x^{2}} \mathrm{~d} x=\mathbf{T}_{a}^{b} x^{\prime} \frac{\partial f}{\partial x}-i \int_{a}^{b} x^{i-1} \frac{\partial f}{\partial x} \mathrm{~d} x=\left\{\begin{array}{l}
\mathrm{o} \text { for } i=\mathrm{o}, \mathrm{I} \\
i(i-\mathrm{I}) F_{i-2} \text { for } i=2
\end{array}\right. \tag{B}
\end{align*}
$$

Zeroth moment

For the zeroth moment the following equations are obtained:
$\dot{F}_{0}=\frac{2 D_{2}}{V_{1} V_{2}}\left(G_{0}-\gamma F_{0}\right)$
$\dot{G}_{0}=-\frac{2 D_{2}}{V_{2}{ }^{2}}\left(G_{0}-\gamma F_{0}\right)$
These equations have a solution of the type of eqn. (3).
$G_{0}-\gamma F_{0}=\left(G_{0}-\gamma F_{0}\right)_{0} e^{-m t}$
Substituting (ri) into (9) and (ro), the latter equations may be integrated and we get:

$$
\begin{align*}
& F_{0}=K_{0}+a \mathrm{e}^{-m t} \tag{12}\\
& G_{0}=L_{0}+b \mathrm{e}^{-m t} \tag{13}
\end{align*}
$$

Here a and b are constants and K_{0} and L_{0} designate the moments for steady state conditions. They obviously satisfy the relation:

$$
\begin{equation*}
L_{0}-\gamma K_{0}=0 \tag{14}
\end{equation*}
$$

First monent
For the first moment we get the equations:

$$
\begin{align*}
& \dot{F}_{1}=v F_{0}+\frac{2 D_{2}}{V_{1} V_{2}}\left(G_{1}-\gamma F_{1}\right) \tag{15}\\
& \dot{G}_{1}=-\frac{2 D_{2}}{V_{2}^{2}}\left(G_{1}-\gamma F_{1}\right) \tag{I6}
\end{align*}
$$

J. Chromatog., 20 (1.965) 305-309

These equations may be combined to:

$$
\begin{equation*}
\dot{G}_{1}-\gamma \dot{F}_{1}+m\left(G_{1}-\gamma F_{1}\right)=-\gamma v F_{0} \tag{17}
\end{equation*}
$$

where m is defined by eqn. (4).
Substituting for F_{0} from (12) and integrating we get:

$$
\begin{equation*}
G_{1}-\nu F_{1}=-\frac{\gamma v K_{0}}{m}+\left(c_{1}+c_{2} t\right) \mathrm{e}^{-m t} \tag{I8}
\end{equation*}
$$

Substitution into (15) and (16) and integration yields:

$$
\begin{align*}
& F_{1}=K_{1}+\left(d_{1}+d_{2} t\right) \mathrm{e}^{-m t} \tag{19}\\
& G_{1}=L_{1}+\left(e_{1}+e_{2} t\right) \mathrm{e}^{-m t} \tag{20}
\end{align*}
$$

where d_{1}, d_{2} and e_{1}, e_{2} are constants and K_{1} and L_{1} are the steady state moments. We have:

$$
\begin{equation*}
L_{1}-\gamma K_{1}=-\frac{\gamma \gamma K_{0}}{m} \tag{2I}
\end{equation*}
$$

and:

$$
\begin{equation*}
K_{1}=\frac{2 v D_{n} K_{0}}{m V_{2}^{2}} t+C^{\prime} \tag{22}
\end{equation*}
$$

where C^{\prime} is the constant of integration.

Second moment

For the second moment we get:

$$
\begin{align*}
& \dot{F}_{2}=2 D_{1} F_{0}+2 v F_{1}+\frac{2 D_{2}}{V_{1} V_{2}}\left(G_{2}-\gamma F_{2}\right) \tag{23}\\
& \dot{G}_{2}=2 D_{2} G_{0}-\frac{2 D_{2}}{V_{2}^{2}}\left(G_{2}-\gamma F_{2}\right) \tag{24}
\end{align*}
$$

These equations may be combined to:

$$
\begin{equation*}
\dot{G}_{2}-\gamma \dot{F}_{2}+m\left(G_{2}-\gamma F_{2}\right)=2 D_{2} G_{0}-2 D_{1} \gamma F_{0}-2 v \gamma F_{1} \tag{25}
\end{equation*}
$$

Substituting for F_{0}, G_{0} and F_{1} from (r2), (I3) and (I9), respectively, and integrating we get:

$$
\begin{equation*}
G_{2}-\nu F_{2}=f_{1}+f_{2} t+\left(f_{3}+f_{4} t+f_{5} t^{2}\right) \mathrm{e}^{-m t} \tag{26}
\end{equation*}
$$

where:

$$
\begin{align*}
& f_{1}=\frac{4 v^{2} \gamma D_{2} K_{0}}{m^{3} V_{2}^{2}}-\frac{2 \gamma K_{0}}{m}\left(D_{1}-D_{2}\right)-\frac{2 v \gamma}{m} C^{\prime} \tag{27}\\
& f_{2}=-\frac{4 v^{2} \gamma D_{2} K_{0}}{m^{2} V_{2}^{2}} \tag{28}
\end{align*}
$$

and f_{3}, f_{4} and f_{5} are constants.

Substituting (26) into (23) and (24) and integrating we get:
$F_{2}=K_{2}+\left(g_{1}+g_{2} t+g_{3} t^{2}\right) e^{-m t}$
$G_{2}=L_{2}+\left(h_{1}+h_{2} t+h_{3} t^{2}\right) e^{-m t}$
with g and h representing constants and K_{2} and L_{2} the steady state moments. We have:

$$
\begin{equation*}
L_{2}-\gamma K_{2}=f_{1}+f_{2} t \tag{3I}
\end{equation*}
$$

and:

$$
\begin{align*}
K_{2}=\frac{4 v^{2} D_{2}^{2} K_{0}}{m^{2} V_{2}^{4}} t^{2}+\left\{2 D_{1} K_{0}\right. & +\frac{4 v D_{2} C^{\prime}}{m V_{2}^{2}}+ \\
& \left.+\frac{8 v^{2} \gamma D_{2}^{2} K_{0}}{m V^{3} V_{1} V_{2}^{3}}-\frac{4 \gamma D_{2}\left(D_{1}-D_{2}\right) K_{0}}{m V_{1} V_{2}}\right\} t+C^{\prime \prime} \tag{32}
\end{align*}
$$

Denoting the variance corresponding to K_{2} by μ_{2}, we have:
$\mu_{2}=\frac{K_{2}}{K_{0}}-\frac{K_{1}^{2}}{K_{0}^{2}}$.
From (22), (32), (33) and (4) we get finally:
$\mu_{2}=\left\{2 D_{1}+\frac{v^{2} \gamma}{D_{2} V_{1}\left(\frac{\gamma}{V_{1}}+\frac{I}{V_{2}}\right)^{3}}-\frac{2 \gamma\left(D_{1}-D_{2}\right)}{\gamma+\frac{V_{1}}{V_{2}}}\right\} t+C^{\prime \prime \prime}$
A similar relation may be derived for the variance in the stationary phase.

CONCIUSIONS

The following conclusions may be drawn from the above solutions of the differential equations for steady state conditions.

The zeroth moment of concentration distribution represents the total solute concentration in a phase and is constant. Steady state conditions are attained exponentially according to:
$e^{-m t}$
The first moment determines the location of a peak and increases linearly with time. The relative peak velocity ν has the value:

$$
\begin{equation*}
v=\frac{\dot{K}_{1}}{v K_{0}}=\frac{2 D_{2}}{m V_{2}^{2}}=\frac{\mathrm{I}}{\mathrm{I}+\frac{\gamma V_{2}}{V_{1}}} \tag{36}
\end{equation*}
$$

The steady state conditions are established quasi-exponentially according to:

$$
\begin{equation*}
\left(d_{1}+d_{2} t\right) e^{-m t} \tag{37}
\end{equation*}
$$

J. Chromatog., 20 (1965) 305-309

The variance determines the peak spreading and increases linearly with time. It may be expressed in terms of a spreading coefficient D in the following way:

$$
\begin{equation*}
\mu_{2}=2 D t+\text { const. } \tag{38}
\end{equation*}
$$

D can be expressed as:

$$
\begin{equation*}
D=D_{1}+\frac{v^{2} \gamma}{2 D_{2} V_{1}\left(\frac{\gamma}{V_{1}}+\frac{1}{V_{2}}\right)^{3}}-\frac{\gamma\left(D_{1}-D_{2}\right)}{\gamma+\frac{V_{1}}{V_{2}}} \tag{39}
\end{equation*}
$$

Steady state is established quasi-exponentially according to:

$$
\begin{equation*}
\left(g_{1}+g_{2} t+g_{8} t^{2}\right) e^{-m t} \tag{40}
\end{equation*}
$$

SUMMARX

Steady state solutions of the differential equations for a partition chromatography column are derived for the first three moments of concentration distribution. Expressions for the peak velocity and spreading coefficient are obtained in terms of the characteristic parameters of column operation.

REFERENCES

[^0]
[^0]: I H. Vink, J. Chromatog., 15 (1964) 488.
 2 H. Vink, J. Chromatog., I8 (I965) 25.
 3 S. Lu jungaren, Trans. Rroy. Inst. Technol., Stochholm, No. 142 (1959).
 4 T. Thedeen, Trans. Roy. Inst. Technol., Stochholm, No. I65 (I960).
 5 H. Vink, Natuve, 205 (1965) 73.
 6 B. Nagel, Arkiv Matematik, 5 (1965) 363.

